13-P108 Understanding the differences between LRP5 and LRP6
نویسندگان
چکیده
The face is a reflection of our genome. Facial deformities are oftentimes harbingers of an underlying disease states. For example, decreased Hedgehog activity in the developing craniofacial region causes holoprosencephaly and close-set eyes (hypotelorism). We found that excessive Hedgehog activity, caused by truncating the primary cilia on cranial neural crest cells, led to hypertelorism and frontonasal dysplasias (Brugrnann et al., 2009). Here, we show that this loss of the intraflagellar transport protein Kif3a also affects Wnt activity in the face. Using transgenic models to ‘‘map” Wnt activity in the developing face, we found that areas of strong Wnt responsiveness coincided with elevated cell proliferation, which resulted in regionalized outgrowth of the facial prominences. Reducing Wnt signaling, through genetic elimination of Lefl/Tcf4, decreases facial outgrowth but in sharp contrast, deletion of Kif3a in craniofacial mesenchyme resulted in expansion of Wnt responsiveness. The boundaries that form between Hedgehog and Wnt responsiveness were disrupted in the developing face. During Drosophila segmentation Interactions between Hedgehog/Wnt pathways provide instructional cues that establish directionality within an epithelium. Here, we provide evidence that a similar mechanism operates in the embryonic face: our data support a model whereby neural crest cells sense and integrate gradients of Hedgehog and Wnt activity. Disruptions to this Hedgehog/Wnt boundary specification lead to abnormal proliferation in the facial prominences. The resulting phenotype of hypertelorism is a hallmark of numerous craniofacial syndromes, as well as some of the known ciliopathies. These data demonstrate a conserved mechanism whereby patterning and growth is regulated during embryogenesis.
منابع مشابه
Dissecting Molecular Differences between Wnt Coreceptors LRP5 and LRP6
Low-density lipoprotein receptor-related proteins 5 and 6 (LRP5 and LRP6) serve as Wnt co-receptors for the canonical β-catenin pathway. While LRP6 is essential for embryogenesis, both LRP5 and LRP6 play critical roles for skeletal remodeling, osteoporosis pathogenesis and cancer formation, making LRP5 and LRP6 key therapeutic targets for cancer and disease treatment. LRP5 and LRP6 each contain...
متن کاملThe Wnt co-receptors Lrp5 and Lrp6 are essential for gastrulation in mice.
Recent work has identified LDL receptor-related family members, Lrp5 and Lrp6, as co-receptors for the transduction of Wnt signals. Our analysis of mice carrying mutations in both Lrp5 and Lrp6 demonstrates that the functions of these genes are redundant and are essential for gastrulation. Lrp5;Lrp6 double homozygous mutants fail to establish a primitive streak, although the anterior visceral e...
متن کاملDecreased BMD and limb deformities in mice carrying mutations in both Lrp5 and Lrp6.
UNLABELLED Humans and mice lacking Lrp5 have low BMD. To evaluate whether Lrp5 and Lrp6 interact genetically to control bone or skeletal development, we created mice carrying mutations in both Lrp5 and the related gene Lrp6. We found that compound mutants had dose-dependent deficits in BMD and limb formation, suggesting functional redundancy between these two genes in bone and limb development....
متن کاملNew Insights into Wnt–Lrp5/6–β-Catenin Signaling in Mechanotransduction
Mechanical loading is essential to maintain normal bone metabolism and the balance between bone formation and resorption. The cellular mechanisms that control mechanotransduction are not fully defined, but several key pathways have been identified. We discuss the roles of several components of the Wnt signaling cascade, namely Lrp5, Lrp6, and β-catenin in mechanical loading-induced bone formati...
متن کاملBoth LRP5 and LRP6 receptors are required to respond to physiological Wnt ligands in mammary epithelial cells and fibroblasts.
A canonical Wnt signal maintains adult mammary ductal stem cell activity, and this signal requires the Wnt signaling reception, LRP5. However, previous data from our laboratory have shown that LRP5 and LRP6 are co-expressed in mammary basal cells and that LRP6 is active, leading us to question why LRP6 is insufficient to mediate canonical signaling in the absence of LRP5. Here, we show that at ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Mechanisms of Development
دوره 126 شماره
صفحات -
تاریخ انتشار 2009